Neuronal spike-rate adaptation supports working memory in language processing

Fitz, H., Uhlmann, M., Van den Broek, D., Duarte, R., Hagoort, P., & Petersson, K. M. (2020). Neuronal spike-rate adaptation supports working memory in language processing. Proceedings of the National Academy of Sciences of the United States of America, 117(34), 20881-20889. doi:10.1073/pnas.2000222117.
Language processing involves the ability to store and integrate pieces of
information in working memory over short periods of time. According to
the dominant view, information is maintained through sustained, elevated
neural activity. Other work has argued that short-term synaptic facilitation
can serve as a substrate of memory. Here, we propose an account where
memory is supported by intrinsic plasticity that downregulates neuronal
firing rates. Single neuron responses are dependent on experience and we
show through simulations that these adaptive changes in excitability pro-
vide memory on timescales ranging from milliseconds to seconds. On this
account, spiking activity writes information into coupled dynamic variables
that control adaptation and move at slower timescales than the membrane
potential. From these variables, information is continuously read back into
the active membrane state for processing. This neuronal memory mech-
anism does not rely on persistent activity, excitatory feedback, or synap-
tic plasticity for storage. Instead, information is maintained in adaptive
conductances that reduce firing rates and can be accessed directly with-
out cued retrieval. Memory span is systematically related to both the time
constant of adaptation and baseline levels of neuronal excitability. Inter-
ference effects within memory arise when adaptation is long-lasting. We
demonstrate that this mechanism is sensitive to context and serial order
which makes it suitable for temporal integration in sequence processing
within the language domain. We also show that it enables the binding of
linguistic features over time within dynamic memory registers. This work
provides a step towards a computational neurobiology of language.
Publication type
Journal article
Publication date
2020

Share this page